国家重点项目建设部网站罗湖做网站哪家好

张小明 2026/1/8 2:07:20
国家重点项目建设部网站,罗湖做网站哪家好,怎么制作网站教程,深圳不加班的互联网公司简介 文章深入解析了Agentic AI和RAG技术的本质区别与适用场景。Agentic AI核心是自主决策循环#xff0c;适合多步骤工作流#xff1b;RAG为LLM提供外部知识#xff0c;适合静态知识库。两者可结合形成Agentic RAG架构#xff0c;通过Context Engineering优化效果。文章还…简介文章深入解析了Agentic AI和RAG技术的本质区别与适用场景。Agentic AI核心是自主决策循环适合多步骤工作流RAG为LLM提供外部知识适合静态知识库。两者可结合形成Agentic RAG架构通过Context Engineering优化效果。文章还介绍本地模型成本优势及决策树选型方法帮助开发者根据实际需求做出明智选择。如果你混AI圈肯定最近被这些技术词汇刷屏Agentic AI、RAG、智能体它们几乎成了 AI 圈的通行密码。但如果你问什么时候该用 RAG什么时候不该用很多人会给你一个标准答案——“It depends”视情况而定。这次我想聊聊这个depends到底 depends 在哪些点上。不盲目追捧技术也不全盘否定。我们聊聊Agentic AI 和 RAG 各自适合什么场景何时该结合使用何时又该避开。如果你正在规划 AI 应用架构或者对这些技术名词一知半解这篇文章应该能帮你理清思路。一、先破除两个常见误解在深入技术细节之前,我们需要澄清两个流传甚广的误解:误解一:Agentic AI 的主要用途就是写代码很多人第一次接触 Agentic AI,是通过 GitHub Copilot、Cursor 这类代码助手。于是自然形成了这样的认知:“智能体 代码生成工具”。但实际上,代码助手只是 Agentic AI 在开发者场景中的一个应用而已。在企业场景中,智能体正在做的事情包括:自动处理客服工单,根据问题类型路由到不同的专业 Agent处理 HR 请求,比如查询假期余额、提交报销申请金融领域的风控审核,自主调用多个数据源进行决策误解二:RAG 永远是为 LLM 补充知识的最佳方案RAG(检索增强生成)确实是一个强大的技术,但它不是万能钥匙。当你的知识库规模很小(比如只有几份 PDF),或者需要的信息可以通过 Fine-tuning 固化到模型中时,RAG 反而会增加系统复杂度。更关键的是,RAG 在规模化场景中会遇到一个反直觉的现象:检索更多文档并不总是带来更好的效果。当你检索的 tokens 数量超过某个临界点后,噪声和冗余信息会导致 LLM 的性能下降。我们接下来会详细拆解这两个技术的本质,以及它们各自的适用边界。二、 Agentic AI 的本质:不只是调用工具什么是 Agentic AI?Agentic AI 的核心是一个自主决策循环。它不是简单的输入-输出模式,而是持续运行的四步循环:Agentic AI 工作循环感知环境Perceive推理决策Reason执行动作Act观察反馈Observe最小化人工干预的自主决策循环感知环境 (Perceive):Agent 观察当前状态——可能是用户的请求、系统的状态、或者外部 API 的返回结果推理决策 (Reason):基于观察到的信息,Agent 调用 LLM 进行推理,决定下一步该做什么执行动作 (Act):Agent 执行具体操作——可能是调用 API、修改文件、或者向用户返回信息观察反馈 (Observe):Agent 检查动作的结果,然后进入下一轮循环这个循环的关键在于:最小化人工干预。你不需要在每一步都告诉 Agent 该怎么做,它会根据目标自主决策。一个典型案例:代码智能体团队在软件开发场景中,多个 Agent 可以协同工作,模拟一个迷你开发团队:架构师 Agent接收需求后,规划功能模块和技术方案输出:架构设计文档、模块划分建议实现者 Agent根据架构方案,生成具体代码直接将代码写入代码库审查者 Agent检查代码质量、安全漏洞、性能问题如果发现问题,将反馈发送给实现者 Agent,形成循环在这个流程中,人的角色更像是乐队指挥,负责设定总目标和协调方向,而不是演奏每一个音符。为什么需要 MCP 协议?Agentic AI 要真正发挥作用,必须能够调用外部工具和数据源。但传统的 API 集成方式存在问题:每个工具的接口都不同,Agent 需要为每个工具写定制化代码缺乏标准化的工具发现机制,Agent 很难知道有哪些工具可用MCP (Model Context Protocol)是 Anthropic 在 2024 年底推出的开源标准,它解决了这个问题:Host Application (Claude/GPT) ↓ MCP Client ↓ MCP Server (标准化接口) ↓External Tools (GitHub/Notion/Slack...)MCP 的核心价值:标准化工具发现:Agent 可以通过 Schema 自动发现可用工具状态管理:支持长时间的多步骤工作流,保持上下文状态跨系统协作:不同的 Agent 可以通过 MCP 共享数据和工具这让 Agentic AI 从玩具原型走向生产级系统。三、 RAG 的两阶段架构与规模化陷阱RAG 是如何工作的?RAG 本质上是一个外挂知识库系统,让 LLM 能够访问训练数据之外的信息。它分为两个阶段:离线阶段 (Offline)文档分块:将 PDF、Word 等文档切成小块(通常 500-1000 字)向量嵌入:使用 Embedding 模型将每个文本块转换为高维向量(如 384 维或 1536 维)存入向量数据库:这些向量被索引存储,方便快速检索在线阶段 (Online)查询嵌入:用户的问题也被转换为向量相似度检索:在向量数据库中找到语义最相似的 Top K 个文档块(通常 3-5 个)拼接上下文:将检索到的文档块和用户问题一起喂给 LLM生成答案:LLM 基于这些上下文生成回答规模化后的反直觉现象当你的文档库从 100 份增长到 10,000 份时,会遇到一个反直觉的问题:检索更多文档 ≠ 更准确的答案如果我们画一条曲线,横轴是检索的 token 数量,纵轴是准确度:准确度 ↑ │ ╱‾‾‾╲ │ ╱ ╲___ │ ╱ ╲___ │ ╱ ╲___ └────────────────────────→ 检索 tokens 数 增加 临界点 过量原因很简单:噪声增加:检索的文档越多,不相关的内容也越多冗余信息:相似的内容重复出现,浪费 token 预算注意力分散:LLM 需要在大量信息中找重点,反而容易遗漏关键内容这就是为什么 RAG 系统需要Context Engineering(上下文工程)来优化检索质量。四、Context Engineering:让 RAG 真正可用的优化策略Context Engineering 的目标是:在不增加 token 消耗的前提下,提升检索内容的质量和相关性。它包括两个关键环节。优化一:数据摄取阶段传统的 RAG 系统只提取 PDF 中的纯文本,但这会丢失大量信息:表格被转成乱七八糟的文字图表完全丢失页眉页脚等元数据被混入正文Docling这类工具解决了这个问题:能力对比功能传统 PDF 解析Docling表格提取文字混乱保留表格结构图表处理丢失转为描述性文字或保留图像元数据无提取标题、作者、章节信息输出格式纯文本Markdown(LLM 友好)这样做的好处:LLM 可以更准确地理解文档结构表格数据可以直接用于分析元数据可以用于过滤和排序优化二:检索阶段的三层优化Context Engineering 优化流程用户查询混合检索 (Hybrid Search)BM25关键词匹配Vector语义搜索重排序 (Re-ranking)按相关性优先级排序块合并 (Chunk Combination)相关块合并成连贯上下文优化后上下文压缩 优先级排序 连贯优化效果✓ 更高准确度✓ 更快推理✓ 更低成本✓ 减少噪声✓ 消除冗余第一层:混合检索 (Hybrid Search)单纯的向量检索有个问题:它擅长语义理解,但不擅长精确匹配。举个例子:用户搜索:“PostgreSQL 数据库”纯向量检索可能返回:“MySQL 教程”(因为语义相似)但用户真正想要的是包含PostgreSQL这个关键词的文档混合检索同时使用两种方法:BM25(关键词匹配):擅长精确匹配,但不懂语义Vector Search(语义搜索):擅长理解意图,但可能返回相关但不准确的结果最后通过加权融合(如 BM25 占 60%,Vector 占 40%)得到最终结果。第二层:重排序 (Re-ranking)混合检索返回的 Top 10 个结果,并不一定按真实相关性排序。Re-ranking 使用一个专门的模型(通常是 BERT 类模型)重新评估每个文档与查询的相关性,重新排序。这一步通常能将准确率提升10-20%。第三层:块合并 (Chunk Combination)假设检索到了这两个文档块:块 A:“GPT-4 的上下文窗口是 128K tokens…”块 B:“…这使得它能够处理长文档任务。”如果这两个块来自同一段落,分开喂给 LLM 会导致信息碎片化。块合并会检测相邻的块,并将它们拼接成完整段落,让 LLM 获得更连贯的上下文。五、本地模型:Agentic AI RAG 的成本优化方案云端 LLM API 的成本是一个绕不开的问题。如果你的 RAG 系统每天处理 10,000 次查询,每次消耗 2,000 tokens,按 GPT-4 的定价:月度成本计算项目数值每日查询量10,000 次每次 tokens2,000GPT-4 定价$0.03/1K tokens日成本$600月成本$18,000对于很多团队来说,这是无法承受的。本地模型的两大优势优势一:数据主权使用云端 API 意味着你的数据会经过第三方服务器。对于医疗、金融等敏感行业,这是不可接受的。本地部署开源模型(如 Llama 3、Mistral)可以让数据完全留在自己的基础设施内。优势二:成本可控虽然本地部署需要 GPU 服务器(如 NVIDIA A100),但长期运行的成本远低于 API 调用:成本对比方案初始成本月运行成本年总成本GPT-4 API$0$18,000$216,000本地 A100$15,000$500(电费)$21,000一年省下 $195,000,足够覆盖硬件投入和人力成本。本地模型的关键优化:KV Cache开源工具如vLLM和Llama.cpp通过KV Cache 优化,大幅提升推理速度:什么是 KV Cache?LLM 生成文本时,每个 token 都需要回顾之前的所有 token。如果没有缓存,每次生成新 token 都要重新计算一遍之前的 Key-Value 矩阵。KV Cache 将这些计算结果缓存起来,只计算新 token 的部分。这使得:首 token 延迟:500ms → 200ms(提速 60%)吞吐量:100 tokens/s → 300 tokens/s(提升 3 倍)对于 RAG 系统来说,这意味着用户等待时间更短,系统容量更大。六、Agentic RAG:两者结合的最佳实践前面我们分别讨论了 Agentic AI 和 RAG,但实际场景中,它们常常需要协同工作。为什么 Agent 需要 RAG?Agentic AI 的决策依赖于信息。如果 Agent 只能依赖 LLM 的训练数据,它会面临两个问题:知识过时:LLM 的训练数据有截止日期(如 GPT-4 是 2023 年 4 月)幻觉风险:当 LLM 不知道答案时,它可能会编造一个看起来合理的答案RAG 为 Agent 提供了查阅资料的能力,就像人类在做决策前会查阅文档一样。一个企业场景:智能客服系统假设你在构建一个企业内部的智能客服系统:场景:员工问:“我的 MacBook Pro 保修期到什么时候?”传统 RAG 系统:检索员工的设备信息文档返回保修日期Agentic RAG 系统:Agent 判断:这是一个需要查询结构化数据的问题调用工具:通过 MCP 调用 IT 资产管理 API检索文档(如果 API 没有数据):回退到 RAG 系统,搜索设备采购文档综合答案:将 API 数据和文档信息结合,生成完整回答:“您的 MacBook Pro(序列号 XXX)保修期至 2025 年 6 月 30 日。如需延保,请访问…”这个流程的关键在于:Agent 根据问题类型,动态决定是调用 API 还是使用 RAG,而不是盲目地总是检索文档。Agentic RAG 的技术架构用户问题 ↓Orchestrator Agent(协调者) ├→ 判断:需要实时数据? │ ├→ Yes → 调用 MCP Tools(API) │ └→ No → 继续 ├→ 判断:需要知识库? │ ├→ Yes → RAG Retrieval Agent │ │ ├→ Hybrid Search │ │ ├→ Re-ranking │ │ └→ 返回 Top 3 chunks │ └→ No → 直接生成 └→ Synthesizer Agent(综合者) └→ 整合所有信息,生成最终答案这种架构的优势:更高准确性:结合结构化数据和非结构化文档更好的可控性:Agent 可以解释为什么选择这个数据源容错能力:如果 API 失败,可以回退到 RAG七、技术选型决策树:什么时候该用什么?经过前面的讨论,我们终于可以回答It depends的问题了。纯 RAG 适用场景✅使用 RAG:知识库相对静态,且规模适中(1,000-100,000 文档)主要处理非结构化文本(如技术文档、法律条款)不需要复杂的多步骤推理示例:企业知识库问答、文档搜索❌不使用 RAG:知识可以通过 Fine-tuning 固化(如特定领域的术语)数据实时性要求高(如股票价格、天气信息)文档数量极少( 10 份)纯 Agentic AI 适用场景✅使用 Agentic AI:需要多步骤工作流(如帮我安排明天的会议并发送邀请)需要调用多个外部工具(通过 MCP)任务目标明确,但路径不固定(如代码审查)示例:代码助手、自动化运维、流程审批❌不使用 Agentic AI:简单的单轮问答任务流程完全固定(可以用传统工作流引擎)对成本极其敏感(Agent 的多轮调用会增加 token 消耗)Agentic RAG 适用场景✅结合使用:需要查资料 推理决策的复杂任务知识来源多样(API 文档 数据库)需要动态选择信息源示例:企业智能助手、法律咨询 AI、医疗诊断辅助决策流程图:开始 ↓ 是否需要外部知识? ├─────┴─────┐ 否 是 ↓ ↓ 直接用 LLM 是否需要多步骤推理? ├─────┴─────┐ 否 是 ↓ ↓ 纯 RAG Agentic RAG八、结论Agentic AI和RAG不是非此即彼的关系,而是解决不同问题的工具。关键在于理解它们各自的边界:核心要点:Agentic AI的价值在于自主决策和多步骤协作,不是所有任务都需要 AgentRAG在规模化后会遇到检索越多,效果越差的问题,需要通过 Context Engineering 优化Agentic RAG的场景是动态选择信息源 复杂推理,不要为了用技术而用技术本地模型在成本和数据主权上有优势,但需要投入 GPU 和运维成本实践建议:先用最简单的方案(直接调用 LLM),确认需求后再引入 RAG 或 Agent如果要用 RAG,优先投入精力在数据质量和检索优化上,而不是盲目增加文档数量如果要用 Agentic AI,先明确什么任务真正需要自主决策,避免过度设计评估长期成本时,认真考虑本地模型方案技术选型没有银弹,但理解每个技术的适用边界,就能避开 90% 的坑。读者福利如果大家对大模型感兴趣这套大模型学习资料一定对你有用对于0基础小白入门如果你是零基础小白想快速入门大模型是可以考虑的。一方面是学习时间相对较短学习内容更全面更集中。二方面是可以根据这些资料规划好学习计划和方向。包括大模型学习线路汇总、学习阶段大模型实战案例大模型学习视频人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型一直在更新更多的大模型学习和面试资料已经上传带到CSDN的官方了有需要的朋友可以扫描下方二维码免费领取【保证100%免费】AI大模型学习路线汇总大模型学习路线图整体分为7个大的阶段全套教程文末领取哈第一阶段从大模型系统设计入手讲解大模型的主要方法第二阶段在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用第三阶段大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统第四阶段大模型知识库应用开发以LangChain框架为例构建物流行业咨询智能问答系统第五阶段大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型第六阶段以SD多模态大模型为主搭建了文生图小程序案例第七阶段以大模型平台应用与开发为主通过星火大模型文心大模型等成熟大模型构建大模型行业应用。大模型实战案例光学理论是没用的要学会跟着一起做要动手实操才能将自己的所学运用到实际当中去这时候可以搞点实战案例来学习。大模型视频和PDF合集观看零基础学习书籍和视频看书籍和视频学习是最快捷也是最有效果的方式跟着视频中老师的思路从基础到深入还是很容易入门的。学会后的收获• 基于大模型全栈工程实现前端、后端、产品经理、设计、数据分析等通过这门课可获得不同能力• 能够利用大模型解决相关实际项目需求大数据时代越来越多的企业和机构需要处理海量数据利用大模型技术可以更好地处理这些数据提高数据分析和决策的准确性。因此掌握大模型应用开发技能可以让程序员更好地应对实际项目需求• 基于大模型和企业数据AI应用开发实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能学会Fine-tuning垂直训练大模型数据准备、数据蒸馏、大模型部署一站式掌握• 能够完成时下热门大模型垂直领域模型训练能力提高程序员的编码能力大模型应用开发需要掌握机器学习算法、深度学习框架等技术这些技术的掌握可以提高程序员的编码能力和分析能力让程序员更加熟练地编写高质量的代码。获取方式一直在更新更多的大模型学习和面试资料已经上传带到CSDN的官方了有需要的朋友可以扫描下方二维码免费领取【保证100%免费】
版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

廊坊网站推广排名程序员招聘求职的网站

突破性能瓶颈:分布式训练架构设计的3个核心原则 【免费下载链接】horovod Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. 项目地址: https://gitcode.com/gh_mirrors/ho/horovod 当你的Transformer模型规模超过单机显存…

张小明 2026/1/7 14:14:04 网站建设

河北seo网站设计个人电脑做网站服务器教程

Unix Shell编程:临时文件、数据读写与环境变量详解 1. 电话簿程序操作与临时文件问题 在进行电话簿操作时,会有如下选项供用户选择: 1. 查找某人 2. 向电话簿添加某人 3. 从电话簿中移除某人 例如,当用户输入错误选择(如输入 0)时,会提示选择错误,需重新选择。若…

张小明 2026/1/7 14:23:39 网站建设

excel表如何做网站连接公司网站上线的通知

Wan2.2-T2V-A14B如何提升背景环境的丰富度?你有没有遇到过这样的情况:输入一段充满诗意的文字——“夕阳洒在古老的石板路上,远处山峦起伏,炊烟从林间小屋袅袅升起”——结果生成的视频却像一张模糊的壁纸循环播放?背景…

张小明 2026/1/7 13:55:34 网站建设

做网站运营有趣吗做虾苗网站有哪些流程

1.解释什么是 ARP 欺骗攻击,并描述如何防范此类攻击。 回答重点 ARP 欺骗攻击(ARP Spoofing Attack)是指通过伪造 ARP(地址解析协议)消息,诱使网络中的设备将虚假的 MAC 地址与合法 IP 地址相关联,从而实现中间人攻击(MITM)。攻击者可以借此监听、截获甚至篡改网络中…

张小明 2026/1/7 15:47:27 网站建设

公司网站建设工作重点dedecms金融网站模板

目录 一、先撕伪命题:AI低代码的3个“智商税”陷阱 二、实测榜单:5款AI低代码平台技术内核拆解 1. 简道云AI:中小企业的“轻量入门款” 2. Mendix:企业级AI的“模型集成专家” 3. JNPF快速开发平台:国产企业级的“…

张小明 2026/1/7 15:58:01 网站建设

怎么做钓qq密码网站徐州小程序开发哪家好

快速体验 打开 InsCode(快马)平台 https://www.inscode.net输入框内输入如下内容: 开发一个交互式矩阵学习工具,功能包括:1) 可视化2D/3D矩阵变换 2) 逐步演示矩阵加减乘除运算 3) 简单的矩阵求解器。使用HTML/JS实现,适合直接在…

张小明 2026/1/7 16:07:05 网站建设